USS Phoenix
USS Phoenix forum / Treknologia / Andromeda vs. Star Trek - pod kątem technologii
 Strona:  ««  1  2 
Autor Wiadomość
#31 - Wysłana: 1 Lis 2020 09:55:24 - Edytowany przez: Q__
Wspomniałem o biblii AND. Warto dodać, że publicznie znany jest jej jeden-jedyny fragment niosący:
Informacje /.../ o strrumieniu

Na które powoływał się - niestety rzadko już tu zaglądający - Kolega Paradoks.


In most space-based science fiction shows, travelling between solar systems is accomplished simply by going very, very, fast. Hyperspeed, warp speed, superzoomorama speed. Not only is this if blatantly impossible, it's been done.
So let's find another way.

While humans were still playing with fun new inventions like the wheel, the Vedra made a startling discovery. The Slipstream. The Slipstream is an extension of our reality, an additional dimension that's integrally intertwined with our own. According to an application of quantum physics called string theory, everything in our Universe is connected to everything else. And the Slipstream is a place where those connections are visible.

In the Slipstream, small and weak connections (those linking small and weak concentrations of matter, such as the link between you and your jelly donut) look like strings, gauzy bits of cotton candy fluff. But large and complex and strong connections, like those between huge concentrations of matter, say planets or suns, form gigantic, pulsing ropes, writhing monstrous tendrils with the diameter of a skyscraper and the length of the universe.

The Vedra also discovered something even more exciting. If you enter the Slipstream, you can harness the energy of these cords… and ride them from one star system to another, like the Universe's largest and most unbelievably convenient rollercoaster.

The only problem is that the strings are in constant motion, crossing and recrossing each other in a hundred different places. So to get from one star to another, the pilot of a ship in Slipstream has to constantly choose between divergent paths in the stream. And the right path changes from moment to moment. Faced with such randomness, all a pilot can really do when it's time to choose it guess.

So, here's what happens when a pilot reaches an intersection. Before the pilot chooses, according to the physicist Erwin Shrödinger (you can skip this part if you want, we'll meet up in a few sentences), both paths are simultaneously right and wrong. In other words, they both manifest the potentiality of being correct and incorrect. It's only when the pilot chooses a specific direction that this potentiality collapses and one path becomes right, and the other wrong. But the cool thing about being an observer in a quantum reality like the Slipstream is that THE ACT OF MAKING A DECISION ALTERS REALITY. So when you guess that a certain path is right, in Slipstream space, 99.9% of the time, you guess correctly.

In other words (start back here if you skipped that last part), human pilots in Slipstream have to guess where they're going, but because of the nature of Slipstream space, they're mostly always right.

Unfortunately, Artificial Intelligences don't guess the way we do. They don't follow their guts. They don't hope they've made the right decision. They really do just pick randomly. In Slipstream, this is not a good thing. It means they're only right 50% of the time. Thus, computers can't pilot ships through Slipstream. Even the Andromeda, a sentient ship, can't pull it off. She requires an organic pilot, or she can never travel between the stars.

Okay, nice theory, but what does it look like? Good question. What we see when the Andromeda travels through Slipstream is this: The Andromeda reaches a point in normal space where the Slipstream is accessible (as far from gravitational sources like suns as possible). Then she shifts, distorts, and suddenly… she's someplace else, riding along a bunch of gigantic glowing ropes like an out-of-control roller coaster on a rail. When the ropes twist and wind, the Andromeda rotates and spins on her axis. When she reaches an intersection, she whips off at wild angles along new tracks, whizzing along to her destination. Finally, thanks to a series of monumentally lucky guesses by her pilot, the Andromeda arrives at her destination and shifts back into normal space. It's like Mr. Toad's Wild Ride on fast forward.

One interesting thing about moving through the Slipstream is that travel time has almost nothing to do with the distance between stars. If you're lucky and the Stream unfolds just right, you could get from here to the next galaxy in minutes. But if you're not lucky, and things get hairy, the same trip could take weeks or even months. About the only rule is that the more frequently a certain path is traveled, the easier and more predictable the journey becomes.

Most of the time. Unless it's not. meda_Texts#Directors_Bible_Excerpt_On_Interstellar _Travel

(Przy czym wydaje się uzasadnionym założenie, że od strony fizycznej zostało to opracowane jeszcze na etapie VOY. Tak przynajmniej sugeruje MA, przypisując ANDzi niedwuznacznie popularyzację voyagerowego patentu - cyt. ze stosownego hasła: "The slipstream drive became a more prominently featured method of FTL propulsion in Gene Roddenberry's Andromeda sci-fi series that premiered in 2000.".)
 Strona:  ««  1  2 
USS Phoenix forum / Treknologia / Andromeda vs. Star Trek - pod kątem technologii

Wygenerowane przez miniBB®

© Copyright 2001-2009 by USS Phoenix Team.   Dołącz sidebar Mozilli.   Konfiguruj wygląd.
Część materiałów na tej stronie pochodzi z oryginalnego serwisu USS Solaris za wiedzą i zgodą autorów.
Star Trek, Star Trek The Next Generation, Deep Space Nine, Voyager oraz Enterprise to zastrzeżone znaki towarowe Paramount Pictures.

Pobierz Firefoksa!